Airswift - Supply Chain Financing

Stellar Audit Bank

Quarkslab

Reference 24-05-1650-REP
Version 1.2
Date 2024/05/24

Quarkslab SAS

10 boulevard Haussmann
75009 Paris

France

1. Project Information

Document history

Version ‘ Date Details Authors

1.0 2024/05/24 | Initial version Madigan Lebreton
Elouan Wauquier

1.1 2024/06/25 | Control audit #1 Madigan Lebreton
Elouan Wauquier

1.2 2024/07/02 | Control audit #2 Madigan Lebreton
Elouan Wauquier

Quarkslab
Contact Contact Address
Frédéric Raynal CEO fraynal@quarkslab.com
Pauline Sauder Project Manager | psauder@quarkslab.com
Stavia Salomon Sales ssalomon@quarkslab.com

Madigan Lebreton | R&D Engineer mlebreton@quarkslab.com

Elouan Wauquier | R&D Engineer ewauquier@quarkslab.com

Airswift
Contact Contact Address
Colin Wang | N/A colin.w@airswift.io
Lize Wu N/A lwu@omnisolu.com
Yi Shi Operations Lead | yi.s@airswift.io
Yan Zhang | N/A yan.z@airswift.io

Ref.: 24-05-1650-REP 1 Quarkslab SAS

Contents

1 Project Information

2 Executive Summary

Context
Objectives oL
Disclaimer

2.1
2.2
2.3
24
2.5
2.6

Findings Summary

3 Manual Review

3.1 Utility — Soroban Token
3.2 Utility — Deployer
3.3 Argentina — Pledge

3.4

3.6

Argentina — Pool
SCF — Tokenized Certificate

3.5.1 Purpose
352 Data
353 Code.
SCF —Pool
3.6.1 Purpose,
362 Data.............. ...,
363 Code.

A Contract interface

Al
A2
A3
A4
A5
A.6

B Compilation warnings

Argentina pledge contract interface
Argentina pool contract interface
Contract deployer contract interface
Pool contract interface
SCF Soroban contract interface

Soroban token contract interface

Recommendations and Action Plan
Conclusion

3.3.1 Purpose
332 Data........
333 Code.

341 Purpose
342 Data
343 Code.

N OU R W W w W

© © © oo o P

Ref.: 24-05-1650-REP

Quarkslab SAS

2. Executive Summary

21 Context

This report presents the work of the collaboration between Airswift and Quarkslab, as defined
in 24-04-1622-PRO. Quarkslab’s objective was to conduct a security assessment of six (6) smart
contracts for Airswift’s Supply Chain Financing Solution (SCF) on Soroban.

The audit parameter was defined by the content of the following GitHub repository:
Airswiftio/SCF at commit c6712721bfa685c305625bbcf2aaccd7£7¢c38cbd .

On 2024/06/25, a control audit was performed to assess the status of the discovered vulner-
abilities as of commit 4d65a64a3890e7e92e0d77£5d0653f2eb3f75bed .

On 2024/07/02, a second control audit was performed to assess the status of the remaining
vulnerabilities as of commit cec7de89c8e8a2e2e19bcadeb826267d395ab918 .

2.2 Objectives

The purpose was to discover potential security misconfigurations, weaknesses, and vulnerabilities
that can be leveraged or exploited by attackers being able to interact directly with the smart
contracts. To that end, Quarkslab proposed the following approach:

1. Discovery and set-up phase;

2. Manual code review;

3. Testing;

4. Report, Audit and Project Management.

2.3 Disclaimer

This report reflects the work and results obtained within the duration of the audit for the
specified scope in 24-04-1622-PRO as agreed between Airswift and Quarkslab. Tests are not
guaranteed to be exhaustive and the report does not ensure that the application is bug-free.

Ref.: 24-05-1650-REP 3 Quarkslab SAS

https://github.com/Airswiftio/SCF
https://github.com/Airswiftio/SCF/tree/c6712721bfa685c305625bbcf2aaccd7f7c38cbd
https://github.com/Airswiftio/SCF/tree/4d65a64a3890e7e92e0d77f5d0653f2eb3f75bed
https://github.com/Airswiftio/SCF/tree/cec7de89c8e8a2e2e19bcadeb826267d395ab918

2.4 Findings Summary

D ame
CRIT-1 Approvals are stored in Instance storage v
CRIT-2 Approvals are not revoked upon regular transfer v
CRIT-3 Approvals are stored in Instance storage v
CRIT-4 Approval is not reset during token transfer v
CRIT-5 M Uncapped supply of token leads to loss of funds v
HIGH-1 Borrower’s TC may never be transferred back after payoff, leading to | v
loss of funds
HIGH-2 || Loan offer creation can be censored by front-running v
HIGH-3 || Offer creation accepts untrusted pool_tokens v
HIGH-4 || Tokenized certificate owner can split before accepting an offer v
MED-1 Approvals cannot be revoked v
MED-2 Untrusted contract call in accept_load_offer v
MED-3 Token approval can’t be deleted v
MED-4 Offer creation accepts non-existing tokenized certificate contracts and | ~
identifiers
MED-5 User may be censored through front-running v
LOwW-1 Unbounded storage of DataKey: :FileHashes(i128) v
LOW-2 Mismatched storage type of DataKey: : Owner (1128) v
LOW-3 Mismatched storage type of DataKey: : Approval (ApprovalKey: :ID(i128))V
LOW-4 Too small type for TC amount v
LOW-5 Redeem time’s validity is not checked at mint time v
LOW-6 Split may be smaller than 10% of the root’s total_amount X
LOW-7 Uncapped number of verifiable credential per token v
INFO-1 | Warnings emitted during the compilation v
INFO-2 | Improper type for TC IDs v
INFO-3 | Warnings emitted during the compilation v
INFO-4 | Unused DataKey variants 4
INFO-5 | Fixed-point variable has limited resolution X
INFO-6 | Bad public variable name v
INFO-7 Superfluous field in Loan v
INFO-8 Superfluous liquidity token v
INF0-9 Storage keys are not standardized v
INFO-10 | Unused data key variants v

Ref.: 24-05-1650-REP 4 Quarkslab SAS

INFO-11

The end_time can be configured to a past timestamp

N

INFO-12

Verifiable credential can be any format

Severity: B critical, 8 high, © medium, ™ low,
Fix status: X acknowledged, ~ mitigated, v fixed

2.5 Recommendations and Action Plan

info

D Reco end 0 Do ote

CRIT-1 Move approvals to Temporary storage. Consider removing | argentina_pledge
approvals entirely, as well as transfer_from , by relying | approval
on Soroban’s authorization framework instead.

Control Audit (2024/07/02): explicit approvals have
been removed in favor of Soroban’s authorization frame-
work, solving the issue.

CRIT-2 Revoke approvals in transfer by removing the corre- | argentina_pledge
sponding storage slot. approval

CRIT-3 Move approvals to Temporary storage. argentina_pledge

approval

CRIT-4 M Reset the token approval in the transfer scf_soroban transfer
function. This can be done by adding
write_approval (&env, id, Nome); .

CRIT-5 Consider capping the total supply of tokens. This | scf_soroban split
cap must be chosen to avoid resource exhaustion in
update_and_read_expired .

HIGH-1 || Either add a way for the borrower to go back to the | argentina_pledge
LoanStatus: :Active state (getting their money back), or | loan
let the borrower transition from the Paid to Close state
— possibly skipping the Paid state entirely.

HIGH-2 [Generate the offer ID dynamically (e.g. sequentially) in the | argentina_pool loan
smart contract, and return the generated value.

HIGH-3 || Ensure that the pool_token wused for creating offers is | scf_pool
trusted. This can be done through a whitelisting mecha-
nism.

HIGH-4 || Deny accept_offer when the tokenized certificate is dis- | scf_pool
abled.

MED-1 Allow users to revoke approvals, either by taking an | argentina_pledge
Option<Address> as input of the appr function, or by | approval
using a dedicated function.

MED-2 Use a trusted registry (whitelist) of TC smart contracts. argentina_pool loan

Ref.: 24-05-1650-REP 5 Quarkslab SAS

MED-3 Add a way to delete approval without overwriting with self- | scf_soroban ap-
approving. proval
MED-4 Ensure that the tc_contract and tc_id exist. | scf_pool
tc_contract can be checked through a whitelisting mech-
anism. tc_id can then be checked through a call to
tc_contract .
Control Audit (2024/06/25): PARTIAL FIX. Airswift
stated that they will filter out invalid offers on their front-
end.
TC contracts are now called at creation time, but still not
verified. Thus, invalid TC contracts are possible.
MED-5 Implement an incremental counter handled by the contract | scf_pool
for offer_id .
LOW-1 Store hashes as fixed size arrays (e.g. [u8; 32]), and add | argentina_pledge
an upper bound on the length of the Vec . If the Vec | storage
cannot be bounded, store each file hash in a different slot
(e.g. using a key DataKey::FileHashes(i128, u32))
LOW-2 When writing to DataKey::Owner(il28) , store the un- | argentina_pledge
wrapped value if it is Some , and remove the value if it is | storage
None .
LOW-3 When writing to DataKey: :Approval (ApprovalKey::ID(i12 argentina_pledge
store the unwrapped value if it is Some , and remove the | storage
value if it is None .
LOW-4 Use a larger integer type to store a TC’s value, such as | argentina_pledge
u6é4 . mint
LOW-5 Check the redeem time is in the future, or explicitly allow | argentina_pledge
not setting a redeem time restriction. mint
LOW-6 scf_soroban split
LOW-7 Consider capping the number of VC strings per token. scf_soroban add_vc
INFO-1 Fix the compilation warning. argentina_pledge
INFO-2 | Use an unsigned type to store and reference TC IDs. argentina_pledge
INFO-3 | Fix the compilation warnings. argentina_pledge
INFO-4 | Remove the unused variants. argentina_pool
INFO-5 | Increase the variable resolution, e.g. by using it as a 7- | argentina_pool loan
decimal fixed point number. This can be done by modifying | payoff
calculate_scaled_amount_with_interest .
Control Audit (2024/06/25): ACKNOWLEDGED (as
intended)
INFO-6 | Change the variable name to reflect its true meaning, such | argentina_pool
as “fee”; “tax”, “toll”, “compensation”, “charge”...
Ref.: 24-05-1650-REP 6 Quarkslab SAS

INFO-7 | Remove the id field from Loan and modify write_loan | argentina_pool stor-

accordingly. age

INFO-8 Remove the liquidity token and replace it with the external | argentina_pool
token. ken

to-

INF0-9 Consider standardizing the storage key symbols by replacing | scf_soroban storage

the "ORDERINFO" symbol with a DataKey variant.

INFO-10 | Remove the unused variants. scf_soroban storage

INFO-11 | Consider adding checks to ensure that end_time isin the | scf_soroban initial-

future. ize

INFO-12 | Checks can be added to ensure the VC is JSON formatted. | scf_soroban VC
Control Audit (2024/06/25): SUFFICIENT MITIGA-
TION

VCs now have an upper bound on their length and their
count. Considering that JSON validation is expensive on-
chain and that this data is not used on-chain, we consider
the mitigation sufficient.

Severity: B critical, B high, " medium, ™ low, | info

2.6 Conclusion

The audit revealed severe vulnerabilities in the codebase. We strongly advise some refactoring
and going through a second audit to ensure proper remediation of the outlined issues.

Because there are similarities in the codebase, some issues are duplicates. However, we count
at least 13 unique LOW or higher issues, with 2 unique CRITICAL vulnerabilities and 4 unique
HIGH vulnerabilities.

Control Audit (2024/06/25): most issues have been addressed. However, 1 HIGH vul-
nerability was not fixed correctly, and 1 INFO issue (present in both sets of smart contracts) has
been incorrectly fixed, turning it into a vulnerability rated CRITICAL (very probable denial of
service). Consequently, we do not recommend the deployment of these smart contract in their
current state.

Control Audit (2024/07/02): all vulnerabilities have been addressed. The remaining
issues have been acknowledged by Airswift, and will be either dealt with at the front-end level
(out of scope for this audit), or won’t be fixed. We consider that they won’t pose a security risk
if properly mitigated.

Ref.: 24-05-1650-REP 7 Quarkslab SAS

3. Manual Review

The application is split in two (2) sets of smart contracts: one for the Argentinian case,
and one for the general case. Although they fill similar roles, we found them to be dissimilar
enough to warrant individual treatment. Consequently, some issues are found in both sets of
smart contracts, while others are specific to one implementation.

The main application is made up of two (2) smart contracts:
o the Tokenized Certificate: argentina_pledge and scf_soroban , and
o the Pool: argentina_pool and scf_pool .

The Tokenized Certificate is an NFT with custom functionality, and the Pool allows users to
lend their Tokenized Certificates. The general case version also uses a Deployer in contract_deployer ,
and the Argentinian case uses a generic Soroban Token in token ,

31 Utility — Soroban Token

This smart contract represents a basic token and is taken straight from Stellar’s soroban-example
repository.

It is intended to be used as a liquidity token for the Argentinian implementation of the Pool.

Because of its simple nature and usage, we won’t report the full analysis here and only focus
on the main issues.

o The DataKey::State(Address) variant is unused and can be removed.

o The approval/allowance pattern is non-idiomatic on Soroban: the typical use case is to
allow a smart contract to transfer tokens on a user’s behalf, for example to perform a
swap.

On Soroban, the user performing the swap automatically includes a signature authorizing
the transfer in their transaction. See Stellar’s documentation on Soroban’s Authorization
Framework.

e The token metadata is stored directly using the SDK, while the remaining fields are stored
using the DataKey enum as a key.

3.2 Utility — Deployer

The Deployer contract is used to deploy and initialize all other smart contracts.

It offers a single entrypoint deploy_contract and allows deploying a contract and calling
multiple functions on it. This is good practice to avoid initialization front-running.

Ref.: 24-05-1650-REP 8 Quarkslab SAS

https://github.com/Airswiftio/SCF/tree/c6712721bfa685c305625bbcf2aaccd7f7c38cbd/soroban/argentina_pledge
https://github.com/Airswiftio/SCF/tree/c6712721bfa685c305625bbcf2aaccd7f7c38cbd/soroban/scf_soroban
https://github.com/Airswiftio/SCF/tree/c6712721bfa685c305625bbcf2aaccd7f7c38cbd/soroban/argentina_pool
https://github.com/Airswiftio/SCF/tree/c6712721bfa685c305625bbcf2aaccd7f7c38cbd/soroban/scf_pool
https://github.com/Airswiftio/SCF/tree/c6712721bfa685c305625bbcf2aaccd7f7c38cbd/soroban/contract_deployer
https://github.com/Airswiftio/SCF/tree/c6712721bfa685c305625bbcf2aaccd7f7c38cbd/soroban/token
https://github.com/stellar/soroban-examples/tree/002edecda8da85d71f7fdc000eeed924c5a71cbd/token
https://github.com/stellar/soroban-examples/tree/002edecda8da85d71f7fdc000eeed924c5a71cbd/token
https://developers.stellar.org/docs/learn/smart-contract-internals/authorization
https://developers.stellar.org/docs/learn/smart-contract-internals/authorization

3.3 Argentina — Pledge

3.31 Purpose

Tokenized Certificates (TCs) constitutes the base of the Supply Chain Financing application
from Airswift. They are stored and managed by this smart contract, and behave similarly to
Non-Fungible Tokens (NFT).

Only the smart contract’s administrator is allowed to mint new TCs, identified by an in-
crementally increasing ID. The TC can then be bought from the smart contract (“pledged”),
transferred among users, and sold back to the smart contract (“redeemed”) after some time.
The TC’s pledge and redeem price are the same and are paid using a set external token (e.g.
USDC).

INFO INFO-1 Warnings emitted during the compilation
Perimeter argentina_pledge
Fix status v

Description

During the compilation, cargo emitted 1 warning. See Appendix B
Recommendation

Fix the compilation warning.

3.3.2 Data

Ref.: 24-05-1650-REP 9 Quarkslab SAS

Instance

) Admin-only

DataKey: :Admin Address .
Set in initialize
Admin-only

DataKey: : Supply i128 Increment-only
Unset is considered 0
Frozen

DataKey: :ExtToken ExtTokenInfo {

address: Address, Set in initialize

decimals: u32,

}
Option<Address> / Address

DataKey: : Approval(
ApprovalKey::ID(i128)

)
DataKey: : Approval(bool
ApprovalKey: :A11(
ApprovalAll {
operator: Address,
owner: Address,
X
)
)

The contract instance stores the administrator address (sole address allowed to mint), the
count of all minted TCs (to generate the next TC ID sequentially), and the (external) token
used for pledging and redeeming TCs (e.g. USDC) with its decimal count.

INFO INFO-2 Improper type for TC IDs
Perimeter argentina_pledge
Fix status v

Description

Tokenized Certificate IDs can never be negative, but are stored as 1128 . Unsigned values
avoid some overhead in sign handling.

Recommendation
Use an unsigned type to store and reference TC IDs.
Approvals are typically only required for a short duration (or even a single transaction), and
thus could be moved to Temporary storage (see the Soroban Token example).

Moreover, the approval/allowance pattern is not idiomatic on Soroban: the typical use case
is to allow a smart contract to transfer tokens on a user’s behalf, for example to perform a swap.
On Soroban, the user performing the swap automatically includes a signature authorizing the

Ref.: 24-05-1650-REP 10 Quarkslab SAS

https://github.com/stellar/soroban-examples/blob/002edecda8da85d71f7fdc000eeed924c5a71cbd/token/src/allowance.rs

transfer in their transaction.
See Stellar’s documentation on Soroban’s Authorization Framework.

_ CRIT-1 Approvals are stored in Instance storage

Likelihood 0000 Impact o000
Perimeter argentina_pledge approval
Prerequisites None
Fix status v
Description

Approvals are typically short-lived (often a single transaction), and do not need to be kept
indefinitely. Moreover, Soroban’s authorization framework allows smart contracts to get direct
authorization from the caller without requiring a call to appr .

Control Audit (2024/06/25): BAD FIX, leading to RAISED SEVERITY

Approvals were moved from Persistent to Instance storage. Either over time or through
the actions of a malicious user, the accumulation of approvals makes invocations more and
more expensive, until the smart contract becomes unusable (Denial of Service). See Stellar’s
documentation on Soroban’s instance storage

Recommendation

Move approvals to Temporary storage. Consider removing approvals entirely, as well as
transfer_from , by relying on Soroban’s authorization framework instead.

Control Audit (2024/07/02): explicit approvals have been removed in favor of Soroban’s
authorization framework, solving the issue.

Persistent

The Instance level is not appropriate for the some fields.

DataKey: :FileHashes(i128) Vec<String>

DataKey: : Amount (i128) u32 Unset is considered 0
DataKey: :RedeemTime (1128) u64

DataKey: : Owner (1128) Option<Address> / Address

Ref.: 24-05-1650-REP 11 Quarkslab SAS

https://developers.stellar.org/docs/learn/smart-contract-internals/authorization
https://developers.stellar.org/docs/smart-contracts/guides/storage/use-instance
https://developers.stellar.org/docs/smart-contracts/guides/storage/use-instance

LOow LOW-1 Unbounded storage of DataKey: :FileHashes (i128)

Likelihood Impact
Perimeter argentina_pledge storage
Prerequisites None
Fix status v

Description

Storage indexed by DataKey::FileHashes(i128) is unbounded, which can lead to high
costs or Denial of Service when accessing it. The file hashes are stored as a Vec<String> ,
while hashes have a limited size.

Recommendation

Store hashes as fixed size arrays (e.g. [u8; 32]), and add an upper bound on the length of
the Vec . If the Vec cannot be bounded, store each file hash in a different slot (e.g. using
a key DataKey::FileHashes(i128, u32))

LOow LOW-2 Mismatched storage type of DataKey: :Owner (i128)
Likelihood 0000 Impact
Perimeter argentina_pledge storage
Prerequisites None
Fix status v
Description

Values written to DataKey: :0Owner (i128) are of type Option<Address> , while values read
from it are of type Address .

Recommendation

When writing to DataKey: :0wner(il28) , store the unwrapped value if it is Some , and
remove the value if it is None .

Ref.: 24-05-1650-REP 12 Quarkslab SAS

LOW LOwW-3 Mismatched storage type of
DataKey: : Approval (ApprovalKey: :ID(1128))

Likelihood 0000 Impact
Perimeter argentina_pledge storage
Prerequisites None
Fix status v

Description

Values written to DataKey::Approval(ApprovalKey::ID(i128)) are of type
Option<Address> , while values read from it are of type Address .

Recommendation

When writing to DataKey: :Approval (ApprovalKey::ID(i128)) , store the unwrapped
value if it is Some , and remove the value if it is None .

LOwW LOW-4 Too small type for TC amount
Likelihood Impact
Perimeter argentina_pledge mint
Prerequisites
Fix status v

Description

A TC’s value (“amount”) is stored as a u32 , limiting its value to $232 — 1 ~ $4 B.
Recommendation
Use a larger integer type to store a TC’s value, such as u64 .
For each TC, the smart contract stores its related information in different fields indexed

by the TC’s ID. While this allows for cheaper storage access, it also obfuscates the natural
underlying TC structure, increasing the risk of introducing bugs (such as CRIT-2)

The smart contract also allows a user to approve transfer for all their TCs to another address.

Temporary

The Persistent level is appropriate for all fields.

No Temporary storage is used.

3.3.3 Code

Ref.: 24-05-1650-REP 13 Quarkslab SAS

Permissioned
e initialize can be called only when the DataKey: :Admin in Instance storage is not set.

Anyone can call this function, but it can be called only once overall. It configures the
contract’s administrator and sets the external token.

The administrator is used to mint new TC using mint, and can transfer its administrative
privileges using set_admin.

The initialize function should be called first, and the contract should not
be used unless a trusted party has successfully called this function

e set_admin enables the administrator to transfer their privileges to another address.

o mint lets the administrator create new TC that users will be able to buy (“pledge”). The
TC has a redeem time, which is the earliest time a user can redeem the TC (or sell it to
the smart contract)

LOw LOW-5 Redeem time’s validity is not checked at mint time
Likelihood 0000 Impact
Perimeter argentina_pledge mint
Prerequisites None
Fix status v
Description

When minting a new TC, the administrator can set the redeem time in the past, allowing
users to pledge and redeem the TC at the same time.

Recommendation

Check the redeem time is in the future, or explicitly allow not setting a redeem time restriction.

View
Seven (7) view functions are defined in this smart contract. These functions are permissionless,

they let users retrieve information about the state of the protocol.

e get_appr takes a TC ID and returns which address it has been approved for, if any. It
panics with Error: :NotAuthorized if no approval has been given for this particular TC, or
if the TC hasn’t been minted yet.

e is_appr takes a pair of addresses and returns whether the first one has approved the second
one to transfer any of its TC on its behalf.

o get_amount takes a TC ID and returns its price (for both pledge and redeem). It returns
0 if the TC hasn’t been minted yet.

Ref.: 24-05-1650-REP 14 Quarkslab SAS

User

get_owner takes a TC ID and returns its current owner (can be the smart contract if it
has not yet been pledged, a regular user, or None if it has been redeemed). It panics with
Error: :NotFound if the TC hasn’t been minted yet.

get_file_hashes takes a TC ID and returns the list of file hashes it has been associated
with at mint time. It panics with Error: :NotFound if the T'C hasn’t been minted yet.

get_redeem_time takes a T'C ID and returns the earliest time it can be redeemed. It panics
with Error: :NotFound if the T'C hasn’t been minted yet.

get_ext_token returns the external token configured at initialize time along with its decimal
count. It panics if the contract has not been initialized yet.

Users can pledge and redeem T'Cs minted by the administrator (in this order). While a TC has
been pledged, users can transfer it like a normal NFT using transfer, transfer_from, appr and

appr_all.

pledge transfers a freshly minted TC (i.e. owned by the smart contract) to the authorizing
user, against the TC’s amount number of external tokens.

redeem burns a pledged TC (i.e. transfers it to None) belonging to the authorizing user.
Upon doing so, the authorizing user is paid the burnt TC’s amount number of external
tokens. As a given TC’s amount cannot be updated, this value is the same as the one in
pledge.

appr gives the authorizing user’s approval to an address (typically a smart contract such
as a pool) to transfer a given TC they own on their behalf, using transfer_from. A new
approval overrides any previous approval of this type.

appr_all gives the authorizing user’s approval to an address (typically a smart contract
such as a pool) to transfer any TC they own on their behalf, using transfer_from. A new
approval does not override approvals for other addresses.

transfer transfers a TC from the authorizing user (if they own the TC) to an address,
ignoring approval rules. This function does not reset the approval given for the transferred
TC.

transfer_from transfers a TC from one user (if they own the TC) to an address it they
approved it before (using appr or appr_all). This function does reset the approval given
for the transferred TC.

Ref.:

24-05-1650-REP 15 Quarkslab SAS

MEDIUM MED-1 Approvals cannot be revoked

Likelihood 0000 Impact
Perimeter argentina_pledge approval
Prerequisites User called appr
Fix status v

Description

There is no dedicated functionality to revoke approvals, so the only way to revoke an approval
is by give it to a bogus address.

Recommendation

Allow users to revoke approvals, either by taking an Option<Address> as input of the appr
function, or by using a dedicated function.

_ CRIT-2 Approvals are not revoked upon regular transfer

Likelihood 0000 Impact 0000
Perimeter argentina_pledge approval
Prerequisites User called appr , then transfer
Fix status v
Description

Approval set by calling appr on a given TC is not revoked when the TC is transferred using

transfer . This enables an attacker to configure an approval on themselves, lend the TC
to a victim in exchange for liquidity tokens, and transfer the TC back to themselves without
paying off their loan.

Recommendation

Revoke approvals in transfer by removing the corresponding storage slot.

3.4 Argentina — Pool

3.41 Purpose
The pool enables users to loan other users TCs for a fee (“rate”).
Loan management is handled by this smart contract and paced by the loan’s status.

Users first propose to loan another user’s TC at the current configured rate. The TC is
returned when both the borrower has paid its debt back, and the creditor accepts to close the
loan.

Transactions are performed using a pool liquidity token that can be exchanged at a rate of
1:1 with the external token (e.g. USDC).

Ref.: 24-05-1650-REP 16 Quarkslab SAS

INFO INFO-3 Warnings emitted during the compilation
Perimeter argentina_pledge
Fix status v
Description
During the compilation, cargo emitted 5 warnings.
Recommendation

Fix the compilation warnings.

3.4.2 Data

All data keys are variants of DataKey.

Storage is accessed through the DatKey enum:

pub enum DataKey {
Admin,
ExtToken,
PoolToken,
Supply,
Amount (1128),
RedeemTime (i128),
Owner(i128),
RatePercent,
Loan(i128),

}

Four (4) of these variants are never used:

o DataKey: :Supply (used at the time of the control audit),
e DataKey: :Amount(i128),

e DataKey::RedeemTime(i128), and

e DataKey: :Owner(i128).

INFO INFO-4 Unused DataKey variants
Perimeter argentina_pool
Fix status v

Description

Four (4) variants of DataKey are never used.

Recommendation

Remove the unused variants.

Ref.: 24-05-1650-REP 17 Quarkslab SAS

Instance

) Admin-only
DataKey: :Admin Address

Set in initialize

Admin-only

Set in initialize
Unset is considered 0,
but can never happen
Frozen

DataKey: :RatePercent u32

DataKey: :PoolToken TokenInfo {
address: Address,
decimals: u32,

Set in initialize

}
Frozen
DataKey: :ExtToken TokenInfo { o
address: Address, Set in initialize
decimals: u32,
}

The contract instance stores the administrator address (sole address allowed to set the global
rate), the global rate (as a percentage of the base price), the pool token used as a liquidity token
for loans, and the (external) token used for minting and burning liquidity tokens.

INFO INFO-5 Fixed-point variable has limited resolution
Perimeter argentina_pool loan payoff
Fix status X

Description

The value stored at DataKey: :RatePercent is used as a 2-decimal fixed point number. This

2321
100 -

limits its resolution to 1%, while its upper bound is unrealistically high at
Recommendation

Increase the variable resolution, e.g. by using it as a 7-decimal fixed point number. This can
be done by modifying calculate_scaled_amount_with_interest .

Control Audit (2024/06/25): ACKNOWLEDGED (as intended)

Ref.: 24-05-1650-REP 18 Quarkslab SAS

INFO INF0-6 Bad public variable name
Perimeter argentina_pool
Fix status v

Description

A “rate” is a ratio between two quantities, most often one quantity with respect to time. In
this context, the fee added is fixed.

Recommendation

Change the variable name to reflect its true meaning, such as “fee”, “tax”, “toll”, “compen-

YW

sation”, “charge”...

Persistent

The Instance level is appropriate for the configured fields.

DataKey: :Loan(i128) Loan {
id: 1128,
borrower: Address,
creditor: Address,
amount: 1128,
tc_address: Address,
tc_id: 1128,
rate_percent: u32,
status: LoanStatus,

}

Each potential loan is stored using a dedicated structure, in a dedicated storage slot indexed
by offer ID. Thus, there can be several loans for a single TC.

INFO INFO-7 Superfluous field in Loan
Perimeter argentina_pool storage
Fix status v

Description

The id field in Loan is superfluous and takes up persistent storage space. In every occur-
rence of its usage, its value is available elsewhere.

Recommendation

Remove the id field from Loan and modify write_loan accordingly.

Ref.: 24-05-1650-REP 19 Quarkslab SAS

The Persistent level is appropriate for this field.

Temporary

No Temporary storage is used.

3.4.3 Code

Permissioned

e The initialize function can be called only when the DataKey: :Admin in Instance storage
is not set.

Anyone can call this function, but it can be called only once overall. It configures the
contract’s administrator, creates and initializes a standard token intended to be used as
the pool’s liquidity token, sets the external token, and the initial loan payoff fee.

The administrator is used to update the pool’s loan payoff fee using set_rate, and can
transfer its administrative privileges using set_admin.

The initialize function should be called first, and the contract should not
be used unless a trusted party has successfully called this function

The liquidity token can be exchanged at 1 : 1 with the external token using deposit and
withdraw. Its administrator is the pool smart contract itself.

Both tokens’ address cannot be updated.

e The set_admin function enables the administrator to transfer their privileges to another
address.

e The set_rate function lets the administrator modify the loan payoff fee.

View

Ten (10) view functions are defined in this smart contract. These functions are permissionless,
they let users retrieve information about the state of the protocol.

o get_loan_status takes a loan ID and returns its status (Pending, Active, Paid, or Closed).
It panics with Error::NotFound if the loan has not been created yet, or if the contract
hasn’t been initialized yet.

e get_loan_tc takes a loan ID and returns its associated TC address and ID. It panics
with Error: :NotFound if the loan has not been created yet, or if the contract hasn’t been
initialized yet.

e get_loan_borrower takes a loan ID and returns its borrower. It panics with Error: :NotFound
if the loan has not been created yet, or if the contract hasn’t been initialized yet.

Ref.: 24-05-1650-REP 20 Quarkslab SAS

e get_loan_creditor takes a loan ID and returns its creditor. It panics with Error: :NotFound
if the loan has not been created yet, or if the contract hasn’t been initialized yet.

e get_loan_amount takes a loan ID and returns its price, excluding fee, in the pool’s liquidity
token’s base unit. It panics with Error: :NotFound if the loan has not been created yet, or
if the contract hasn’t been initialized yet.

e get_payoff_amount takes a loan ID and returns its payoff price, including fee, scaled by
the pool’s liquidity token’s decimals and rounded down. It panics with Error: :NotFound if
the loan has not been created yet, or if the contract hasn’t been initialized yet.

o get_loan_rate takes a loan ID and returns its associated payoff fee (corresponding to the
pool’s payoff fee when the offer was created). It panics with Error::NotFound if the loan
has not been created yet, or if the contract hasn’t been initialized yet.

e get_pool_rate returns the pool’s current payoff fee, or 0 if the contract has not been
initialized yet.
o get_ext_token returns the address of the external token (e.g. USDC). It panics if the smart

contract hasn’t been initialized yet.

e get_liquidity_token returns the address of the pool’s liquidity token. It panics if the
smart contract hasn’t been initialized yet.

User

Users first need to exchange external tokens for the pool’s liquidity tokens, at a rate of 1 : 1,
using deposit and withdraw.

o deposit takes an amount, transfers it from the authorized user (from) to the smart contract,
and mints that amount of liquidity token to the authorized user.

e withdraw takes an amount, transfers it from the smart contract to the authorized user
(from), and burns that amount of liquidity token from the authorized user.

Because there is no restriction on deposits and withdrawals, because the exchange rate is
fixed at 1 : 1, and because no additional administrative rights are provided to the pool, the
liquidity token is superfluous and can be replaced with the external token at every place. This
reduces the attack surface and simplifies the interactions with the smart contract.

Ref.: 24-05-1650-REP 21 Quarkslab SAS

INFO INFO-8 Superfluous liquidity token
Perimeter argentina_pool token
Fix status v

Description

The liquidity token is a standard token created by and for the pool. It can be exchanged at
any time at a rate of 1 : 1 with the external token. The pool only performs basic mint and
burn operations. Thus, the token is superfluous and can be replaced with the external token
directly.

Recommendation

Remove the liquidity token and replace it with the external token.

Then, they can create and interact with loans using the following five (5) functions presented
in a state machine. We verified that each function can only be called when the loan is in the
correct state, and that the function updates the state according to the state machine.

create_loan_offer —| Pending

accept_loan_offerl

payof%_loan cancel_loan_offer

default_loan

close_loanl

Defaulted

Ref.: 24-05-1650-REP 22 Quarkslab SAS

HIGH-1 Borrower’s TC may never be transferred back after payoff,
leading to loss of funds

Likelihood [| | @) Impact [[| @)
Perimeter argentina_pledge loan
Prerequisites User paid off their loan
Fix status v
Description

Opening and closing a loan requires both users’ synchronicity: to open a loan, a creditor
needs to create an offer that the borrower needs to accept. The creditor can walk back using
cancel_loan_offer if they change their mind. When closing a loan, the borrower pays
their debt back with an added fee, but the creditor is not compelled to transfer the TC back
to the borrower (e.g. if the TC appreciates in value). In this case, the creditor does not get
their money back but gets to keep the TC, while the borrower loses the TC, the borrowed
money and the fee.

Control Audit (2024/06/25): NOT FIXED

Airswift modified the behavior but did not fully fix the issue. When the loan is accepted,
the TC is transferred to the smart contract instead of the creditor. Later, the admin is
able to transition an Active loan to the Defaulted final state, transferring the TC from
the smart contract to the creditor. This state is equivalent to the Active state before the
change (the creditor owns the TC), except the loan cannot be paid back anymore. If a loan
is in the Paid state, a dissident creditor can refuse to close the loan, leading to the original
problematic situation discribed above, with the exception of the creditor not keeping the TC.
Control Audit (2024/07/02): FIXED

Airswift merged the Paid and Close state by removing the close_loan function, and
making payoff_loan transition to the Close state.

Recommendation

Either add a way for the borrower to go back to the LoanStatus::Active state (getting
their money back), or let the borrower transition from the Paid to Close state — possibly
skipping the Paid state entirely.

e create_loan_offer creates a loan offer on an existing TC by specifying its address and
ID. This is meant to be used on other people’s TC to offer them liquidity in exchange
for their TC. To create the offer, the authorized user (creditor) must transfer the TC’s
amount of liquidity tokens to the pool, and this amount is saved in the loan structure.
The caller specifies the offer ID, and the contract verifies that an offer with the given ID
does not already exist. The TC address is arbitrary and is called in create_loan_offer,
accept_loan_offer, and close_loan.

e cancel_loan_offer if the offer was not accepted, the original creditor can cancel their offer.
They are reimbursed the amount they initially transferred (no call to the TC).

e accept_loan_offer if an offer exists for a TC they own, a user can accept the offer and
receive the TC’s amount of liquidity tokens. The TC is transferred to the creditor (with a
call to the saved tc_address).

Ref.: 24-05-1650-REP 23 Quarkslab SAS

e payoff_loan if the authorized user is the borrower, transfers the TC’s amount of liquidity
tokens to the smart contract with the added fee.

e close_loan if the authorized user is the creditor, transfers the TC’s amount of liquidity
tokens to the creditor with the added fee, and transfers the TC back to the borrower.

_ HIGH-2 Loan offer creation can be censored by front-running

Likelihood [1 | @) Impact
Perimeter argentina_pool loan
Prerequisites Visibility into the mempool
Fix status v

Description

A malicious user can prevent the creation of a loan offer by front-running it with the creation
of a dummy loan offer with the same ID. For example, this enables them to either censor a
particular user, or to prevent any user from posting a loan offer for a specific TC.

Recommendation

Generate the offer ID dynamically (e.g. sequentially) in the smart contract, and return the
generated value.

MEDIUM MED-2 Untrusted contract call in accept_load_offer
Likelihood Impact 0000
Perimeter argentina_pool loan
Prerequisites Social Engineering
Fix status v

Description

A malicious user can publish a loan offer with an arbitrary TC. If a user accepts this offer,
the TC’s transfer function is called which can in turn perform arbitrary operations, such
as transferring the victim’s funds to the attacker.

Recommendation

Use a trusted registry (whitelist) of TC smart contracts.

3.5 SCF - Tokenized Certificate

3.51 Purpose

The Tokenized Certificate smart contract is defined in the scf_soroban directory of the repos-
itory. This contract defines tokenized certificates that represent an amount of an external token.
A tokenized certificate can be split into multiple ones with portions of the original amount before
being disabled.

Ref.: 24-05-1650-REP 24 Quarkslab SAS

Every tokenized certificate share a single root tokenized certificate created by the adminis-
trator of the smart contract.

3.5.2 Data

Instance
e a token order information structure, with the symbol "ORDERINFQO";
e the administrator address, with the symbol DataKey: : Admin;

e an approval boolean for each tokenized certificate identifier, with the symbol DataKey: : Approval(
ApprovalKey: :ID(id));

e an approval boolean for mapping two addresses, with the symbol DataKey: : Approval (ApprovalAll
{ operator, owner });

The TokenOrderInfo structure stores external token’s specific data. Three fields are de-
fined in this specific structure:

e buyer_address : the address that can pay the amount of external token;
e total_amount : the total amount of external token to pay;

e end_time : the deadline after which tokenized certificates can be marked as expired.

INFO INFO-9 Storage keys are not standardized
Perimeter scf_soroban storage
Fix status v

Description

The storage keys in the Tokenized Certificate contract are initialized with a variant of the
DataKey enumeration as symbol, except for the order information that is initialized with
the "ORDERINFO" string as symbol.

Recommendation

Consider standardizing the storage key symbols by replacing the "ORDERINFO" symbol with
a DataKey variant.

Ref.: 24-05-1650-REP 25 Quarkslab SAS

_ CRIT-3 Approvals are stored in Instance storage

Likelihood 0000 Impact 0000
Perimeter argentina_pledge approval
Prerequisites None
Fix status v
Description

Approvals are typically short-lived (often a single transaction), and do not need to be kept
indefinitely. Moreover, Soroban’s authorization framework allows smart contracts to get direct
authorization from the caller without requiring a call to appr .

Control Audit (2024/06/25): BAD FIX, leading to RAISED SEVERITY
Approvals were moved from Persistent to Instance storage. Either over time or through
the actions of a malicious user, the accumulation of approvals makes invocations more and
more expensive, until the smart contract becomes unusable (Denial of Service). See Stellar’s
documentation on Soroban’s instance storage

Control Audit (2024/07/02): explicit approvals have been removed in favor of Soroban’s
authorization framework, solving the issue.

Recommendation

Move approvals to Temporary storage.

Persistent

The Instance level is not appropriate for some configured fields.

e the owner of a tokenized certificate identifier, with the symbol DataKey: :Owner (id);

the recipient of a tokenized certificate identifier, with the symbol DataKey: :Recipient (id);
o the “verifiable credential” of a tokenized certificate identifier, with the symbol DataKey: : VC(id);

o the sub tokenized certificates of a tokenized certificate when split is used, with the symbol
DataKey: :SubTCInfo(id);

e a boolean for each token identifier indicating if it is disabled, with the symbol DataKey: :Disabled (id);
o the token total supply as a signed integer, with the symbol DataKey: : Supply;

e the external token address and decimals, with the symbol DataKey: : ExternalToken;

e a boolean for the expiration of tokenized certificates, with the symbol DataKey: : Expired;

e a boolean for the pay status, with the symbol DataKey: :Paid.

Ref.: 24-05-1650-REP 26 Quarkslab SAS

https://developers.stellar.org/docs/smart-contracts/guides/storage/use-instance
https://developers.stellar.org/docs/smart-contracts/guides/storage/use-instance

INFO INFO-10 Unused data key variants
Perimeter scf_soroban storage
Fix status v
Description
Four (4) variants of DataKey are never used.
Recommendation

Remove the unused variants.

Temporary

The Persistent level is appropriate for the configured fields.

No Temporary storage is used.

3.5.3 Code

Permissioned

The administrator is responsible for initializing the contract through the initialize function.
This initialization sets three important parameters:

e buyer_address : The address that will pay the amount of external token;
e total_amount : The total amount of external token to be paid;

e end_time : The deadline after which tokenized certificates can be marked as expired.

INFO INFO-11 The end_time can be configured to a past timestamp
Perimeter scf_soroban initialize
Fix status v

Description

The initialization of the Tokenized Certificate contract allows setting the end timestamp to
the past.

Recommendation

Consider adding checks to ensure that end_time is in the future.

Then, the administrator has exclusive access to four functions:
e mint_original : mints the root tokenized certificate;

e Dburn : allows administrator to burn any tokenized certificate;

Ref.: 24-05-1650-REP 27 Quarkslab SAS

View

set_external_token_provider : configures the external token address;

add_vc : adds a verifiable credential to a tokenized certificate.

The smart contract provides several functions to read the contract state. These functions are:

User

admin : retrieves the administrator address;
get_appr : gets the approved address of a token identifier;

is_appr : retrieves a boolean indicating the state of approval of an address (spender) on
another address;

amount : retrieves the amount attached to the input token identifier;

parent : retrieves the parent token identifier attached to the input token identifier;
owner : retrieves the owner of the input token identifier;

vc : retrieves the verifiable credential attached to the input token identifier;
get_all_owned : retrieves all the tokens owned by an address;

is_disabled : retrieves the disabled status of the input token identifier;
check_paid : retrieves the boolean indicating if amount has been paid by buyer;

recipient : retrieves the recipient of a token identifier, it is used during split.

The smart contract provides several functions to users. These functions are:

appr : approves an address on a tokenized certificate;

appr_all : approves an address to transfer any token owned by another address;
transfer : transfers tokenized certificate from its owner;

transfer_from : transfers tokenized certificate from its owner by an approved address;
split : splits a tokenized certificate into sub certificates, disabling the split token;

redeem : burns a tokenized certificate and transfer the amount of external token that this
certificate holds;

sign_off : allows a recipient to gain ownership on a tokenized certificate after a split;

pay_off : used by the buyer to pay the total amount of external token.

Token owners are able to set approval on a specific token that they owned through the appr
function. They can also approve an address for all the token they hold through the appr_all
function. An approved address can then transfer the token through transfer_from function,
which will also reset the approval on token.

However, when a transfer is made through transfer , token approval is not reset to its
default value. This allows the owner to approve himself on the token, transfer it to another

Ref.:

24-05-1650-REP 28 Quarkslab SAS

entity and transfer it back through to himself transfer_from . Moreover, as accepting an offer
in the Offer Pool contract uses the transfer function, a malicious token owner can accept an
offer that will transfer the token to the offerer and transfer it back to himself through this issue.

_ CRIT-4 Approval is not reset during token transfer

Likelihood 0000 Impact 0000
Perimeter scf_soroban transfer
Prerequisites Ownership of a token
Fix status v
Description

An address can be set as approved on a token identifier, allowing it to transfer the token
through transfer_from . The transfer function doesn’t reset this approval during a
transfer, allowing the owner of the token to transfer it and later retrieve it.

Recommendation

Reset the token approval in the transfer function. This can be done by adding
write_approval (&env, id, Nome); .

MEDIUM MED-3 Token approval can’t be deleted
Likelihood [| | @) Impact
Perimeter scf_soroban approval
Prerequisites Ownership of a token
Fix status v

Description

The approval set for a given token can’t be deleted, it can only be overwritten. This forces
owners to approve their self to delete an approval.

Recommendation

Add a way to delete approval without overwriting with self-approving.

A tokenized certificate can be split into multiple others. For example, a tokenized certificate
with amount 1000 can be split into three certificates with amount 500, 300 and 200. Splitting
a token will increase the total supply of tokenized certificates. A single token can be split into
an infinite number of other tokens. The update_and_read_expired function is used in most
contract entry-points. When the end time is reached, this function iterates through all the tokens
to mark them as expired. However, a large total supply will lead this function to high resource
consumption, breaking the whole protocol. Users will not be able to redeem their tokenized
certificates for the amount of external token, and funds will be lost.

Ref.: 24-05-1650-REP 29 Quarkslab SAS

_ CRIT-5 Uncapped supply of token leads to loss of funds

Likelihood [1 | @) Impact 0000
Perimeter scf_soroban split
Prerequisites Ownership of a token
Fix status v
Description

An owner of a tokenized certificate can split it into an infinite number of tokens, leading to
denial of service of the protocol.

This is due to a lack of supply capping and the fact that splitting with zero amount is possible.
Control Audit (2024/06/25):

Each split now must be 10% of the root’s total_amount , and there can be a depth of at
most 5 splits.

Recommendation

Consider capping the total supply of tokens. This cap must be chosen to avoid resource
exhaustion in update_and_read_expired .

LOW LOW-6 Split may be smaller than 10% of the root’s total_amount
Likelihood [| | @) Impact
Perimeter scf_soroban split
Prerequisites Ownership of a token
Fix status X
Description

If the sum of the split token is less than the parent token, an addition child is created with
the remaining value, but this value can be less than 10% of the root’s total_amount .
Because splits are limited in depth, and because only one small sub-TC may be created per
split, this issue is classified as LOW.

Recommendation

“Verifiable Credential” strings are attached to every tokenized certificate. The administrator
can attach VC strings to any token. The number of VC string per token is not capped. This
string is supposed to be formatted in JSON but can be any format.

Ref.: 24-05-1650-REP 30 Quarkslab SAS

LOwW LOW-7 Uncapped number of verifiable credential per token

Likelihood Impact
Perimeter scf_soroban add_vc
Prerequisites Administrator
Fix status v

Description

The administrator can add an infinite number of VC strings to a token.
This can lead to resource exhaustion when retrieving these strings through the vc view
entrypoint.

Recommendation

Consider capping the number of VC strings per token.

INFO INFO-12 Verifiable credential can be any format
Perimeter scf_soroban VC
Fix status v

Description

The verifiable credential attached to a tokenized certificate can be any format.
Recommendation

Checks can be added to ensure the VC is JSON formatted.

Control Audit (2024/06/25): SUFFICIENT MITIGATION

VCs now have an upper bound on their length and their count. Considering that JSON
validation is expensive on-chain and that this data is not used on-chain, we consider the
mitigation sufficient.

Ref.: 24-05-1650-REP 31 Quarkslab SAS

3.6 SCF - Pool

3.61 Purpose

The Offer Pool smart contract is defined in the scf_pool directory of the repository. This
contract allows users to create offers for tokenized certificates. Then, owners of token can accept
an offer in exchange for his token.

3.6.2 Data

Instance
e the administrator address, with the symbol DataKey: : Admin;
e a WASM hash for the pool token contract, with the symbol ContractDataKey: :PoolTokenWasmHash;
e a map of address to address, with the symbol ContractDataKey: :PoolTokens;

« an “external token” address for each pool token created, with the symbol ContractDataKey: : ExtToken (pool

Persistent

The Instance level is appropriate for the configured fields.

o an offer structure per offer identifier, with the symbol DataKey: :0ffer (offer_id);

The offer structure is defined as follows.

pub struct Offer {
pub from: Address,
pub pool_token: Address,
pub amount: i128,
pub tc_contract: Address,
pub tc_id: 1128,
pub status: 1128,

The Persistent level is appropriate for the configured fields.

3.6.3 Code

Permissioned

The administrator is responsible for initializing the contract through the initialize function.
This initialization sets two important parameters:

e admin : The administrator address;

Ref.: 24-05-1650-REP 32 Quarkslab SAS

token_wasm_hash : The WASM hash used to deploy pool tokens.

Then, the administrator has exclusive access to four functions:

View

set_admin ;
add_pool_token ;

expire_offer .

The Offer Pool contract provides several functions to read the contract state. These functions

are:

User

admin ;
get_pool_tokens ;
get_offer ;

get_ext_token .

The smart contract provides several functions to users. These functions are:

deposit : allows a user to deposit an amount of external tokens to receive an equivalent
amount of pool tokens.

withdraw : allows a user to burn an amount of pool tokens to receive an equivalent
amount of external tokens.

create_offer : allows a user to create an offer. This offer proposes an amount of a
specified token for a Tokenized Certificate. The amount of token is transferred to the
contract.

expire_offer : is used by the administrator or the offerer to cancel an offer. Canceling
an offer will send back the amount of token to the offerer.

accept_offer : called by the owner of the Tokenized Certificate. It transfers the offered
amount to the owner, and the Tokenized Certificate is transferred to the offerer.

The accept_offer function accepts any pool_token address for creating an offer. This
allows an attacker to create a malicious token and create an offer with it. Then, two scenarios
can appear:

the administrator cancels this malicious offer;

the tokenized certificate owner accepts this malicious offer.

In both cases, the caller will interact with the malicious token. By the inner working of the

Sorob

an platform, this interaction with the malicious contract will allow draining all tokens

from this user because authorization will be given (bypass of require_auth()).

Ref.:

24-05-1650-REP 33 Quarkslab SAS

HIGH HIGH-3 Offer creation accepts untrusted pool_tokens

Likelihood Impact 0000
Perimeter scf_pool
Prerequisites Accept or cancel an offer
Fix status v
Description

An attacker can create offer with malicious token. During accept_offer or cancel_offer ,
an external call to this malicious token will be executed, leading to potential drain of users’
funds.

At the time of the control audit, pool_token has been renamed ext_token in the function
body, and is checked against a whitelist.

Recommendation
Ensure that the pool_token used for creating offers is trusted. This can be done through a

whitelisting mechanism.

Moreover, offers can be created for non-existing tokenized certificate contracts and identifiers.

MEDIUM MED-4 Offer creation accepts non-existing tokenized certificate con-
tracts and identifiers

Likelihood Impact
Perimeter scf_pool
Prerequisites
Fix status
Description
A user can create offers for non-existing TC contracts and non-existing token identifiers
Recommendation

Ensure that the tc_contract and tc_id exist. tc_contract can be checked through a
whitelisting mechanism. tc_id can then be checked through a call to tc_contract .
Control Audit (2024/06/25): PARTIAL FIX. Airswift stated that they will filter out
invalid offers on their front-end.

TC contracts are now called at creation time, but still not verified. Thus, invalid TC contracts
are possible.

The purpose of Offer Pool contract is to create offers for tokenized certificates. These to-
kenized certificates are valuable because they hold an amount of tokens that will be paid by
the buyer_address . However, an owner of a tokenized certificate can both accept an offer
and keep this amount of token held by the certificate. This can be done through a split of
the certificate into a single child certificate before accepting an offer. The offerer will receive a
disabled tokenized certificate, and the owner will receive the offered amount of tokens and will

Ref.: 24-05-1650-REP 34 Quarkslab SAS

have a newly created tokenized certificate with its parent value.

- HIGH-4 Tokenized certificate owner can split before accepting an
offer

Likelihood [1 | @) Impact 0000
Perimeter scf_pool
Prerequisites Tokenized certificate ownership
Fix status 4
Description

The owner of a tokenized certificate can split his token before accepting an offer, letting the
offerer receiving a disabled tokenized certificate.

Recommendation
Deny accept_offer when the tokenized certificate is disabled.

When creating an offer, an offer_id is passed as input. This identifier must be unique
and unused. An attacker can leverage this to front-run a legit user’s transaction to censor him.

MEDIUM MED-5 User may be censored through front-running
Likelihood Impact 0000
Perimeter scf_pool
Prerequisites
Fix status v

Description

The offer_id parameter passed as input must be unique and not used. An attacker can
use this to censor a user by creating 0 amount offers with the same identifier through front-
running.

Recommendation

Implement an incremental counter handled by the contract for offer_id .

Ref.: 24-05-1650-REP 35 Quarkslab SAS

A. Contract interface

A1 Argentina pledge contract interface

External function

‘ Admin-only ‘ Operations

initialize X Read/Write
set_admin v Read/Write
mint v Read/Write
transfer X Read/Write
transfer_from X Read/Write
appr X Read/Write
appr_all X Read/Write
get_appr X Read-Only
is_appr X Read-Only
pledge X Read/Write
redeem X Read/Write
get_amount X Read-only
get_owner X Read-only
get_file_hashes X Read-only
get_ext_token X Read-only
get_redeem_time X Read-only

Ref.: 24-05-1650-REP

36

Quarkslab SAS

A.2 Argentina pool contract interface

External function

Admin-only ‘ Operations

initialize X Read/Write
set_admin v Read/Write
set_rate v Read/Write
deposit X Read/Write
withdraw X Read/Write
create_loan_offer X Read/Write
cancel loan_offer X Read/Write
accept_loan_offer X Read/Write
payoff_loan X Read/Write
close_loan X Read/Write
get_loan_rate X Read-Only
get_pool_rate X Read-Only
get_loan_tc X Read-Only
get_loan_borrower X Read-Only
get_loan_creditor X Read-Only
get_liquidity_token X Read-Only
get_ext_token X Read-Only
get_payoff_amount X Read-Only
get_loan_amount X Read-Only
get_loan_status X Read-Only

A.3 Contract deployer contract interface

deploy_contract

External function ‘ Admin-only ‘ Operations

Read/Write

Ref.: 24-05-1650-REP

37

Quarkslab SAS

A.4 Pool contract interface

External function

‘Admin—only Operations

initialize X Read/Write
admin X Read-Only
set_admin v Read/Write
add_pool_token v Read/Write
get_pool_tokens X Read-Only
deposit X Read/Write
withdraw X Read/Write
create_offer X Read/Write
expire_offer X Read/Write
get_offer X Read-Only
accept_offer X Read/Write
get_ext_token X Read-Only

Ref.: 24-05-1650-REP

38

Quarkslab SAS

A.5 SCF Soroban contract interface

External function ‘ Admin-only ‘ Operations
initialize X Read/Write
admin X Read-Only
set_admin v Read/Write
appr X Read/Write
appr_all X Read/Write
get_appr X Read-Only
is_appr X Read-Only
amount X Read-Only
parent X Read-Only
owner X Read-Only

ve X Read-Only
get_all_owned X Read-Only
is_disabled X Read-Only
transfer X Read/Write
transfer_from X Read/Write
mint_original v Read/Write
burn v Read/Write
split X Read/Write
redeem X Read/Write
set_external_token_provider v Read/Write
check_paid X Read-Only
check_expired X Read-Only
recipient X Read-Only
sign_off X Read/Write
pay_off X Read/Write
add_vc v Read/Write

Ref.: 24-05-1650-REP

39

Quarkslab SAS

A.6 Soroban token contract interface

External function ~Admin-only ‘ Operations
initialize X Read/Write
mint v Read/Write
set_admin v Read/Write
allowance X Read/Write
approve X Read/Write
balance X Read/Write
transfer X Read/Write
transfer_from X Read/Write
burn X Read/Write
burn_from X Read/Write
decimals X Read-Only
name X Read-Only
symbol X Read-Only

Ref.: 24-05-1650-REP

40

Quarkslab SAS

B. Compilation warnings

Compiling argentina-pledge v0.1.0 (soroban/argentina_pledge)

warning: unused import: ~String"
--> src/storage_types.rs:1:42

use soroban_sdk::{contracttype, Address, String};

note: “#[warn(unused_imports)]” on by default

Compiling argentina-pool v0.1.0 (soroban/argentina_pool)
warning: unused import: ~Symbol-
--> src/contract.rs:13:90

13 | contract, contractimpl, panic_with_error, token, vec, Address, BytesN, Env,

< IntoVal, Symbol,

|
= note: “#[warn(unused_imports)]” on by default

warning: unused import: ~String’
--> src/interface.rs:1:41
|
1 | use soroban_sdk::{Address, BytesN, Env, String};
T

warning: unused import: ~“String"
--> src/storage_types.rs:1:42
|
1 | use soroban_sdk::{contracttype, Address, String};
T

warning: unused variable: “from®
--> src/contract.rs:213:28

213 | fn payoff_loan(e: Env, from: Address, offer_id: i128) {

| “77" help: if this is intentional, prefix it with an

— underscore: ~_from~

I

= note: “#[warn(unused_variables)]” on by default
warning: unused variable: “from’

--> src/contract.rs:238:27

238 | fn close_loan(e: Env, from: Address, offer_id: i128) {
| “777 help: if this is intentional, prefix it with an
— underscore: ~_from"
Ref.: 24-05-1650-REP 41 Quarkslab SAS

	Project Information
	Executive Summary
	Context
	Objectives
	Disclaimer
	Findings Summary
	Recommendations and Action Plan
	Conclusion

	Manual Review
	Utility – Soroban Token
	Utility – Deployer
	Argentina – Pledge
	Purpose
	Data
	Code

	Argentina – Pool
	Purpose
	Data
	Code

	SCF – Tokenized Certificate
	Purpose
	Data
	Code

	SCF – Pool
	Purpose
	Data
	Code

	Contract interface
	Argentina pledge contract interface
	Argentina pool contract interface
	Contract deployer contract interface
	Pool contract interface
	SCF Soroban contract interface
	Soroban token contract interface

	Compilation warnings

